
Socioeconomic networks with long-range interactions

Rui Carvalho*
Centre for Advanced Spatial Analysis, University College London, 1-19 Torrington Place, London WC1E 6BT, United Kingdom

Giulia Iori†

Department of Economics, School of Social Science, City University, Northampton Square, London EC1V 0HB, United Kingdom
�Received 4 June 2007; revised manuscript received 11 March 2008; published 22 July 2008�

We study a modified version of a model previously proposed by Jackson and Wolinsky to account for
communication of information and allocation of goods in socioeconomic networks. In the model, the utility
function of each node is given by a weighted sum of contributions from all accessible nodes. The weights,
parametrized by the variable �, decrease with distance. We introduce a growth mechanism where new nodes
attach to the existing network preferentially by utility. By increasing �, the network structure evolves from a
power-law to an exponential degree distribution, passing through a regime characterized by shorter average
path length, lower degree assortativity, and higher central point dominance. In the second part of the paper we
compare different network structures in terms of the average utility received by each node. We show that
power-law networks provide higher average utility than Poisson random networks. This provides a possible
justification for the ubiquitousness of scale-free networks in the real world.
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I. INTRODUCTION

The study of socioeconomic networks is a burgeoning
field in the physics and economics literature, with major
progress having been attained over the last decade �1–6�.
Individuals and firms interact through networks to share in-
formation and resources, exchange goods and credit, make
new friendships or partnerships, etc. The structure of the net-
work through which interactions take place may thus have an
important effect on the success of the individual or the pro-
ductivity of the firm �1�. Furthermore, the network of inter-
actions among socioeconomic agents plays an important role
for the stability and efficiency of socioeconomic systems �7�.
Theories about how interaction networks form are thus es-
sential for a deeper understanding of the development and
organization of society as a whole.

The economics literature focuses mainly on equilibrium
networks and the network formation mechanisms are based
on utility maximization and costs minimization. The aim of
most economic papers is to identify, among the set of equi-
librium networks, the geometry that optimizes efficiency1 in
the sense of social benefit. Likewise, economists are inter-
ested in the stability2 of equilibrium networks under link
deletion, addition, or rewiring �1,2�. A shortcoming of these
models is that the equilibrium networks are often too simple
in their geometry �stars, complete networks, interlinked stars,
etc.�, typically as a consequence of the symmetries that need

to be assumed in the payoff functions in order to make the
models analytically tractable �8�. The physics literature, in-
stead, has mainly focused on the characterization of the
structure of real networks and proposed dynamic models,
mostly based on probabilistic rules, capable of reproducing
the observed geometrical structures �Poisson, stretched expo-
nential, and scale-free networks� �9–11�.

In this paper we try to combine the physics and economic
approaches, by introducing a stochastic network formation
mechanism inspired by economists’ utility maximization
models, which naturally extends the well known physicists’
preferential attachment rule �12�. One of the most interesting
models of socioeconomic network formation was introduced
by Jackson and Wolinsky in 1996 �1�. In their model, the
formation and evolution of links is driven by a utility maxi-
mization mechanism. The model is based on the assumption
that agents may derive benefit not only from the nodes to
which they are directly connected �their nearest neighbors�,
but also from the ones they are connected to indirectly �pos-
sibly via long paths�. Less distant connections are more valu-
able than more distant ones, but connections to the nearest
neighbors are costly. The utility of node i is defined as

ui = wii + �
j�i

wij�
dij − �

j�V�i�
cij , �1�

where the contribution to the utility of i from j may depend
on the weight wij of the edge between i and j �or, alterna-
tively, on the fitness of node j�; 0���1 captures the idea
that the utility gain from indirect connections decreases with
distance; dij is the number of links in the shortest path be-
tween i and j �dij =� if there is no path between i and j�; V�i�
is the set of nearest neighbors of i; and cij are the �node
specific� costs to establish a directed connection between i
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1A network g is efficient with respect to an aggregate utility mea-

sure u if u�g��u�g�� ∀ g��G �1�.
2A network is pairwise stable when no node would benefit from

severing an existing link, and no two nodes would benefit from
forming a new link �1�. Pairwise stability is stronger than Nash
equilibrium and is aimed at sequential updating.
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and j.3 Costs can also be differentiated in costs of initially
creating or maintaining an edge �2�.

The papers by Jackson and Wolinsky �1�, as well as the
one by Bala and Goyal �2�, are mainly concerned with sta-
bility and efficiency of the network resulting from different
dynamic updating rules. In particular, Jackson and Wolinsky
study pairwise stability when agents can update only a link at
a time �either deleting or creating it�, while Bala and Goyal
allow agents to rearrange all their connections at once. The
updating is deterministic in both models, and a new configu-
ration is accepted only if it increases the utility of the agent.
These two papers show that the star network is both efficient
and stable for a wide range of the parameters when �=1.
Nonetheless, a multiplicity of network architectures exist in
�2� for 0���1 which could be a strict Nash equilibrium,
and to which the system may converge depending of the
initial conditions. Feri �13� has shown that for sufficiently
large networks the star network is stochastically stable for
almost all the range of parameters, even for 0���1.

Here we focus on the connections model of Jackson and
Wolinsky, i.e., the case wij =1, wii=0, and cij =c. In this case,
the utility can be written as

ui = �
l=1

lmax
�i�

�
�k�dik=l�

�l − �
j�V�i�

c = �
l=1

lmax
�i�

�lzl
�i� − cz1

�i�, �2�

where the sum in l is over all shortest paths of length l from
node i, the sum in k is over all nodes whose shortest path
from i is dik= l, lmax

�i� is the path length of the node the furthest
away from node i, and zl

�i� is the number of lth-nearest neigh-
bors of node i. The utility of a node is expressed in Eq. �2� as
a weighted sum of the number of nodes accessible from i on
outward “layers” of increasing distance from i. Thus, we
start at node i and multiply � by the number of nodes that are
joined by an edge to i—this being the first layer. We then add
�2 times the number of nodes that are joined by an edge to a
node in the first layer—this is the second layer. We continue
in this way until no new nodes are found. Hence, expression
�2� incorporates implicitly the well known breath-first search
algorithm �14�. In this paper, we will consider only networks
with zero costs. Therefore, Eq. �2� becomes

ui = �
l=1

lmax
�i�

�lzl
�i�. �3�

In the first part of the paper we focus on a specific network
growth mechanism and examine the resulting network topol-
ogy. If each new node attached deterministically to the exist-
ing node with maximal utility, the resulting network would
be a star. The randomness generated by a probabilistic at-
taching rule can be interpreted as costs and barriers to gather
information, or bounded rationality, all of which limit the
ability to establish links in an optimal way, thus possibly
generating more realistic geometries than the star network. It

is thus worthwhile to ask which network topologies are to be
found when new nodes arrive steadily and create links with
existing nodes in a probabilistic way, proportionally to the
utility of existing nodes. In this way, we build on the prefer-
ential attachment growth rule of Barabási and Albert �9,12�
which can be recovered from Eq. �3� when lmax

�i� =1. Further-
more, preferential attachment is, arguably, the most exten-
sively studied mechanism of network formation and one that
has revealed insights into properties observed in real net-
works. Therefore, it is important to understand the robustness
of the specific rule of linear preferential attachment by node
degree, which is one of the aims of this paper.

Often, the specific network growth mechanisms are un-
known and only the topology of the equilibrium network can
be extracted from data. One obvious question is then how the
observed equilibrium networks rank in terms of their effi-
ciency, e.g., Erdős-Rényi versus scale-free networks. We ad-
dress this question in the second part of the paper and derive
analytical results by using the generating function approach
�15�. We show that power-law networks are more efficient
than Poisson random network when individual utility is de-
fined by Eq. �3�, thus providing a possible explanation for
why scale-free networks are so ubiquitous.

II. GROWING NETWORKS

In the classic Barabási and Albert model �12�, a network
is grown by adding, at every time step, a new node that
attaches to m existing nodes with a probability proportional
to their degree, ��ki�=ki /� j=1

N kj. At time t, the resulting net-
work has size Nt=m0+ t, where m0�m is the size of the
�fully connected� network at time t=0. Preferential attach-
ment models were in fact introduced in the literature already
by Yule �16� and Simon �17� and are a generalization of the
Polya urn scheme.

The preferential attachment mechanism generates a scale-
free probability density of incoming links that leads to the
stationary result p�k�=2m2 /k�, with �=3 independently of
m. The model is also characterized by a clustering coefficient
larger than the one found for the Erdős-Rényi networks �for
m	1� and no clear assortative or disassortative behavior �9�.

Several models have been proposed lately to investigate
extensions of the preferential attachment mechanism through
edge removal and rewiring, inheritance, redirection or copy-
ing; node competition, aging and capacity constraints; and
accelerated growth of networks to name just a few �see
�9,10,18,19� for reviews�. Of particular relevance to our ap-
proach are fitness models �20–23�, where the probability of
attaching to a node is proportional to the node fitness,

��ki� 	
f iki

�
j=1

N

f jkj

. �4�

Here we extend the preferential attachment rule by introduc-
ing a growing mechanism inspired by the work of Jackson
and Wolinsky �1�. Our contribution is to propose preferential
attachment by node utility. Thus, the probability that a new
node j will be connected to an existing node i depends on the
utility of i, such that

3In �1� costs are assumed to be equally, or cooperatively, shared
by i and j, but extensions to the noncooperative case have also been
explored.
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�i =
ui

�
k=1

N

uk

�5�

where the utility of node i, ui, is given by Eq. �3�. Attach-
ment happens with uniform distribution for �=1 generating
an exponential distribution of node degree.4 While the model
is not defined for �=0, the preferential attachment rule �5� is
invariant up to multiplicative factors in Eq. �3�, so for �
�0 the qualitative behavior of the model remains unchanged
if we define utility as

ui� =
ui

�
= ki + �

l=2

lmax
�i�

�l−1zl
�i�, �6�

where ki is the degree of node i. Thus, as �→0 our model
converges to the Barabási-Albert model and generates a
scale-free network.

Our model has resemblances with the fitness models dis-
cussed above. However, there is a fundamental discrepancy:
we regard utility as a time-dependent measure of node fit-
ness, whereas existing models assume that node fitness does
not change with time.

At each time step, a new node j joins the network and the
utility of existing nodes changes. When m=1, the utility in-
crement to an existing node i at distance l from j is given by

ui=�l and therefore, at each time step, the computation of
utility for the network can be completed in O�N� time. Figure
1 is a diagram of a possible network configuration with m
=m0=1 after t=5 time steps, showing the change in utility of
existing nodes, 
ui=�l. When m	1, the increment in the
utility of node i depends on the existing network geometry
and 
ui��l. Therefore, when m	1, we need to recompute
the utility of all existing nodes at every time step, and the
computation runs in O�N2� time as it involves running a
breadth-first search algorithm from every node. This is the
reason that we ran simulations for N=105 when m=1, but
only up to N=5�103 when m	1.

Existing nodes i at a higher distance than a certain lmax
from new node j receive a contribution 
ui=�d�j,i�

�10−�precison�, which is less than the number of significant
digits that the computer can store �typically the precision is
32 in double precision�, and do not need to have their utility
updated in the simulations. This maximal distance lmax is
defined as

10−�precision� 	 �lmax ⇔ lmax 	 −
�precision�

log10 �
. �7�

Our implementation of the algorithm updates the utility of all
nodes accessible from the new node j up to distance lmax
=−32 / log10 �. The code was implemented in C++ and ran
on a Condor framework �high-throughput computing� �24�
for several values of �. Ensemble averages were taken over
30 runs.

Expressions �3� and �6� predict the existence of two dis-
tinct regimes: a scale-free regime as �→0 ���0� and a ran-
dom growth regime for which the degree distribution is ex-
ponential at �=1. We are interested in exploring how the
network evolves from one limiting regime to the other as we
increase �.

Figures 2�a�–2�c� show the distribution of degree for m
=1, 2, and 5. We also plot the corresponding distribution for
the Barabási-Albert �BA� model �solid curves shifted verti-
cally�. For very small �	0.01, preferential attachment by
degree is indistinguishable from preferential attachment by
utility and the probability distributions of both quantities de-
cay as p�x�	x−� with �=3. The power-law decay in the BA
model is known to be a peculiarity of the linear preferential
attachment mechanism and is destroyed by small perturba-
tions like, for example, a nonlinear attachment rule ��ki�
	ki

� �12�. Here we also observe a departure from the scale-
free regime as we increase �. Furthermore, in the Barabási-
Albert model the degree distribution decays as a power law
with exponent �=3 independently of m. In our model, in-
creasing m has the effect of homogenizing the utility of the
nodes �the distance between pairs of nodes decreases with
increasing connectivity in the networks�. Consequently, de-
viations from the power-law decay are observed at lower and
lower values of � as we increase m.

Betweenness centrality is plotted in Figs. 2�g�–2�i� as m is
varied. Recent results have shown that the distribution of
loads �or betweenness� scales with a power law �25,26�
p�g�	g−� where �=2 for a tree �and hence for m=1�. This
justifies the collapse of the curves of the distribution of be-
tweenness in Fig. 2�g�. As can be observed in Figs. 2�h� and
2�i�, the distribution of betweenness deviates from the
power-law behavior as m is increased.

For intermediate values of � and m=1 a number of inter-
esting features appear. First of all, we observe that the utility
distribution becomes steplike �Fig. 2�d�� suggesting the pres-
ence of subsets of nodes that share similar utilities. This
phenomenon can also be inferred from the network layouts
in Fig. 3 �for networks of 103 nodes with m=1�, which are
produced using the Kamada-Kawai spring layout �27�. Es-
sentially, the Kamada-Kawai layout assigns stronger springs
to vertices that are closer in the graph-theoretic sense �i.e., by
following edges� and therefore places them closer together.
In the case m=1 �a tree�, nodes close to the hubs on the4This is model A in �12�.

FIG. 1. �Color online� Schematic layout of network growth
when m=m0=1. The addition of a new node, 6, implies an increase
of the utility of nodes 1–5 which is simply �d, where d is the path
length from node 6. The simplicity of this updating mechanism
allowed simulations to be run with N=105 when m=1.
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graph layout will also be close in graph terms and therefore
we can interpret the layout heuristically: these nodes have
similar utility. When �=0.01 �close to the BA scale-free re-
gime�, the layout shows a few utility hubs �the dark vertices�
surrounded by clouds of nodes that disperse as we move
further away from the hubs; for �=0.2 denser clouds of
nodes cluster around a smaller number of hubs, and can still
be observed farther away from the hub; for higher � the
clouds start dispersing; eventually for �=1 all nodes have the
same utility.

The rearrangement of the network as � increases from
zero gives rise to non monotonous behavior of the average

path length l̄, degree assortativity rdegree �28�, and central

point dominance CB� �29�. Both l̄ and rdegree show a minimum
for �	0.15 �N=105 and m=1� and CB� has a maximum
around the same value. This behavior can be observed in

Figs. 4�a�–4�c�. The average path length l̄��� is measured
relative to the path length of a random growing network �i.e.,

relative to l̄�1��. The scale-free regime is characterized by a
shorter path length than the random growth regime. Here we
observe an even further contraction of the network for values
of � up to 	0.5. Note that the average path length of a star
network is l�=2 for large N. When normalizing with l�1�

=20.16 we get a value of l�	0.1. While this value is still
much smaller than l̄�0.15�, the network contraction seems to
indicate a move toward a more starlike configuration. To
further investigate this point, we compute the central point
dominance measure introduced by Freeman �29� and plot it
in Fig. 4�b�. This measure is defined as the average differ-
ence in node centrality �measured by node total between-
ness� between the most central point and all the others. The
central point dominance takes a value between zero �for a
graph where all points have the same centrality� and one �for
the wheel or star graph�. The maximum of CB� for �	0.15 in
Fig. 4�b� confirms that the network is becoming more star-
like around these values of �.

Next, we plot the assortativity of the network in Fig. 4�c�.
We implement as measure of assortativity the degree assor-
tativity rdegree �28� which takes values from −1 to +1: nega-
tive values for disassortative networks, 0 if the networks are
neither dissasortative or assortative, and +1 for fully assorta-
tive networks. This value approaches zero for large N in the
BA model �30� and is negative for a star. Our model shows a
lower assortative mixing than the BA model for values of �
up to 	0.5. The decrease in rdegree is also consistent with our
hypothesis that the network is becoming more star like at �
	0.15. While the network goes through this rearrangement
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FIG. 2. �Color online� Cumulative distribution function of degree �a�–�c�, utility �d�–�f�, and betweenness centrality �g�–�i� for several
values of �� �0,1�, and m=1, 2, and 5. We also plot the corresponding distribution of degree and betweenness for the BA model �curves
were shifted vertically�. Simulations were averaged over 30 runs in networks with N=105 �m=1� or N=5�103 �m=2 and 5�. Colored bands
around the curves are 95% confidence intervals.
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the degree of the most connected node �as a fraction of the
total number of links� is nonetheless monotonically decreas-
ing with �, as shown in Fig. 4�d�. The same behavior is
observed for the utility of the most connected node �not
shown here�. This reveals that, as new nodes are added to the
network, they do attach on average closer to the hubs as �
increases, generating a more compact network, but not di-
rectly to them.

To gain further insights into the structural changes that
take place as � increases from zero, we analyze the role of
entry time on node connectivity by computing the ratios
u /umax and k /kmax for the first 100 nodes as a function of the
time at which they entered the network. The ratios plotted in
Fig. 5 are averaged over 30 different simulations, for net-
works with N=105 and m=1. The plot shows that for any �
the initial node is likely to acquire the highest fraction of
links and utility. Moreover, for �=0.15 both the degree and
utility ratios decay faster than in the scale-free regime. This
reveals that, for �	0.15, the earlier nodes receive both a
higher relative degree and utility than in the scale-free case.
In other words, the earlier nodes are stronger hubs than in the
scale-free case and thus the network arranges in a more star-
like configuration around �=0.15. As � increases further, the
slope of the utility ratio becomes lower than in the scale-free
regime. In this range, the utility differences between old and
new nodes are not large enough to create well-defined utility
or degree hubs.

Figure 5 also highlights the fundamental mechanism of
structure formation in our model: the fine relation between
degree and utility as � is varied. In the scale-free regime,
preferential attachment by utility is equivalent to preferential
attachment by degree and node degree and utility assume the

same value as the network grows. At �	0.15, we observe a
gap between the two scaled quantities, suggesting a discrep-
ancy between degree and utility for the higher-order neigh-
bors of the utility hubs. This gap is larger for �=0.15 than
�=0.4, indicating that around �	0.15 the growth mecha-
nism is generated by a variable �node utility� which is con-
siderably independent of node degree and thus revealing why
this is the region where the network displays more interest-
ing structure. As � increases toward 1, the influence of ran-
dom network growth becomes more important and this
structure-generating mechanism disappears.

Finally, we investigate how average node utility compares
in networks generated with our preferential utility attach-
ment, the scale-free regime �here generated via the BA pref-
erential attachment mechanism� and a star network. The av-
erage utility of a star network is given by

ū���� = �z1
1 + �
N − 2

2
� , �8�

where z1=2�N−1� /N. For N large, z1�2 and ū����	N�2. In
Fig. 6 we plot the average utility for networks in our model
at different � when N=5�103 and z1=2, 4, and 10 and com-
pare that to the corresponding average utility in the BA
model and a star with the same N. The plot shows that the
BA scale-free network has a higher utility than the network
generated via our preferential utility mechanism at all values
of � and z1. Networks in our model become more starlike for
�	0.5, but this implies an increase in the utility of only a
small number of nodes �the early nodes�. Therefore, the av-
erage utility of nodes in the network is still higher in the BA
model than in our model for the same values of � due to the
scale-free structure of the former. Comparisons with the star
network can only be made when z1=2 as this is the average
degree of the star network when N is large. Figure 6 confirms
that the star network has the highest utility for this value of
z1 among all the networks we study. Nevertheless, the star
network can only be achieved if agents are perfectly rational
and have access to full information �in which case the attach-
ment mechanism would be deterministic�. This is rarely the
case in a real word situation; thus the comparison with the
star is of little practical relevance.

III. ANALYTICAL RESULTS FOR RANDOM NETWORKS

An interesting question to ask �for example, from the
point of view of the social planner� is how network topolo-
gies rank against each other and which network structure
maximizes the total or the average utility �networks that sat-
isfy this condition are said to be efficient in economics�. We
show that it is possible to derive analytical results for the
average utility in Poisson and power-law networks. By com-
paring average utility in different network topologies with
the same size and the same average degree, we show that
power-law networks are more efficient than Poisson random
networks �even though less efficient than the star�. The effect
of costs on ū��� is a constant term for all networks with the
same N and z1. Therefore, without loss of generality, we
choose c=0 in the analysis below.

FIG. 3. Kamada-Kawai spring layout �27� for m=1 and N
=103. Sample layout for �= �a� 0.01, �b� 0.2, �c� 0.7, and �d� 1. On
each panel, nodes are colored by their utility on a gray scale from
minimal �white� to maximal �black� utility.
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If the sum in Eq. �3� was to be evaluated up to distance
lmax
�i� =1 for every node, expression �9� would simplify to

ū���=�z1, i.e., average utility would be independent of the
specific network topology and all networks with the same
number of nodes and links would be equally efficient. Thus
we need to introduce long-range interactions �lmax

�i� 	1� to be
able to rank networks in terms of their efficiency.

To derive an expression for average utility in generic ran-
dom networks with N large, we average both sides of Eq. �3�:

ū��� = �
l=1

l̄

�lzl, �9�

where zl is the average number of lth neighbors of a node.

Newman et al. �31,32� define l̄ via the expression

1 + �
l=1

l̄

zl = N . �10�

Now that we have expressed average utility in terms of the
breadth-first search algorithm, we can derive a closed form
of expression �9� if we have access to analytical expressions

for l̄ and zl. This can be accomplished by generating func-
tions, which are particularly useful when determining means,
standard deviations, and moments of distributions �15�.

The average number of neighbors �average degree� and
the average number of second neighbors of a node can be
derived from the probability generating function of node de-
gree, G0�x�=�k=0

� pkx
k, as long as the degree distribution pk is

specified. The beauty of the generating function formalism is
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that one can derive zl as a function of z1 and z2 only �31–33�:

zl = 
 z2

z1
�l−1

z1. �11�

Replacing Eq. �11� in Eq. �9� yields

ū��� = �z1�
l=1

l̄

��Z�l−1 =
�z1���Z�l̄ − 1�

�Z − 1
, �12�

where Z=z2 /z1. For Z	1 and N	z1+1, which are condi-

tions satisfied by most networks, l̄ can be calculated as a
function of N, z1, and z2 from Eqs. �10� and �11� as �31�

l̄ =
ln��N − 1��Z − 1�/z1 + 1�

ln�Z�
. �13�

In what follows, we investigate the behavior of Eq. �12� for
Poisson and power-law random networks.

Poisson random networks are characterized by z1= pN and
z2=z1

2 �31�, thus Eq. �13� yields lP=ln�
N�z1−1�+1

z1
� / ln�z1�. In

this case, Eq. �12� becomes

ūP�N,�,z1� =
z1����z1�ln�N+1−N/z1�/ln�z1� − 1�

�z1 − 1
�14�

for N	z1+1, 0���1, and z1	1.
Next, we consider power-law networks with degree distri-

bution of the form

pk��,a� =
1

��,1 + a�
�a + k�−�, a � 0, �15�

where the normalizing factor �� ,a+1�=�k=1
� �a+k�−� is the

Hurwitz zeta function ��	1�. The generating function for
the probability distribution is given by

G0�x,�,a� = �
k=1

�

pkx
k =

x��x,�,a + 1�
��,a + 1�

, �16�

where ��x ,� ,a�=�k=0
� xk

�a+k�� is the Lerch transcendent. For
our purposes, only the first two derivatives of ��x ,� ,a+1�
with respect to x are relevant, as the average number of first
and second-neighbors are given, respectively, by z1�� ,a�
= �

�G0�x�
�x �x=1 and z2�� ,a�= �

�2G0�x�
�x2 �x=1. Hence

z1��,a� =
��1,� − 1,a + 1� − a��1,�,a + 1�

��,a + 1�
, �17�

� 	 2 ∧ a � 0,

z2��,a� =
�� − 1,a + 1�

��,a + 1�
z1�� − 1,a� − �a + 1�z1��,a� ,

�18�

� 	 3 ∧ a � 0.

Thus

Z��,a� =
�� − 1,a + 1�

��,a + 1�
z1�� − 1,a�

z1��,a�
− a − 1, � 	 3 ∧ a � 0.

�19�

Substituting Eqs. �17� and �19� into Eq. �13�, we find

l̄SF�N,�,a�

=

ln
−
�a+2��N−1�

z1��,a� +
z1�� − 1,a��� − 1,a + 1��N − 1�

z1��,a�2��,a + 1�
+ 1�

ln
− a +
z1�� − 1,a��� − 1,a + 1�

z1��,a���,a + 1�
− 1� ,

�20�

N 	 z1��,a� + 1 ∧ � 	 3 ∧ a � 0 ∧ Z��,a� 	 1,

and thus average utility is given by

ūSF�N,�,�,a� =
�z1��,a����Z��,a��l̄SF�N,�,a� − 1�

�Z��,a� − 1
, �21�

N 	 z1��,a� + 1 ∧ 0 � � � 1 ∧ � 	 3 ∧ a � 0 ∧ Z��,a� 	 1,

where z1�� ,a�, Z�� ,a�, and lSF�N ,� ,a� are given by Eqs.
�17�, �19�, and �20�, respectively.

When a=0, the distribution of degree, Eq. �15�, becomes
a pure power law pk���= 1

���k
−�. In this case, we have

��� ,a+1��a=0=��� and ���x ,� ,a+1��a=0=
Li��x�

x ; therefore
Eq. �16� becomes

G0�x,�� =
Li��x�
���

. �22�

This generating function is also obtained for the power-law
distribution with exponential cutoff, proposed in �34,35�,
pk�� ,��=Ck−�e−k/�, in the limit �→�.
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Expression �22� implies that

�z1����a=0 =
�� − 1�

���
, � 	 2, �23�

�z2����a=0 =
�� − 2� − �� − 1�

���
, � 	 3. �24�

Therefore, in pure power-law networks, when N→�, the
average number of second neighbors, z2���, is finite only for
�	3. However, the Riemann zeta function ��� is a decreas-
ing function of � �for �	3� and z1��=3�=�2 /6�3�
�1.368 43. In other words, the existence of z2��� implies
z1����z1��=3��1.368 43, which is a nonrealistically low
value for average degree in real networks. This explains why
we have chosen the modified power-law distribution �15�.

The generating function �16� encapsulates all the mo-
ments of the degree distribution �31,36,37�. Hence, the ex-
pressions for z1�� ,a� and z2�� ,a�, Eqs. �17� and �18�, are

only exact in the limit N→�. Further, l̄SF�N ,� ,a� and
ūSF�N ,� ,� ,a�, both of which depend on z2�� ,a�, are defined
only where z2�� ,a� is finite, i.e., for �	3. Therefore, it is
essential to understand the behavior of z1�� ,a� and z2�� ,a�
in power-law networks. Figure 7 shows z1 �full curves� and
z2 �dashed curves� within the range �	3∧Z	1 �where

l̄SF�N ,� ,a� is defined� for, from left to right, a=0, 1, 2, and
3.

Having deduced closed-form expressions for the average
utility in Poisson and power-law networks, we can now com-
pare both networks under the condition that z1 is the same.
Figure 8 is a plot of average utility versus � when z1
= �2,4 ,10� and N=105 for Poisson and power-law networks.
The average utility of Poisson networks is completely speci-
fied by N , �, and z1, but power-law networks defined by
�15� have one extra degree of freedom in z1�� ,a�. In this

case, we compute z1 numerically by solving Eq. �17� for
z1�� ,a�= �2,4 ,10� when �= �3.1,4 ,5�. For all cases studied,
power-law networks are more efficient than Poisson net-
works.

IV. DISCUSSION

The growth mechanism we have proposed is a natural
extension of the Barabási-Albert preferential attachment by
degree to preferential attachment by node utility. Our analy-
sis shows that, for small values of �, the utility decay param-
eter, the network retains a scale-free structure that is none-
theless destroyed when � increases. We have identified a
regime in � where the network is characterized by a lower
average path length and assortativity coefficient and a higher
central point dominance than the scale-free network. In this
regime, the distribution of utility is a steplike function and
the network has a more starlike structure.

The derivation of analytical expressions for average util-
ity in Poisson and power-law networks reveals that the latter
have higher ū for the range of parameters that is of signifi-
cance in real-world networks �z1�2�. This suggests a
mechanism that may explain the ubiquitous presence of
power-law networks, in particular in situations where col-
laboration, interaction, and information sharing among the
nodes are of paramount relevance.

Social networks are highly volatile. Friendships can be
stable for a long time but occasional encounters may lead to
creation of links that are never used again in the future. A
dynamical model of network formation, where not only can
links be heterogeneous, but their weights can change con-
tinuously over time, would be a more appropriate way to
describe social interactions. Our assumption that wij =1 for
all links is obviously a first-order approximation and prefer-
ential growth, with no link rearrangements, is a crude de-

FIG. 7. �Color online� Average number of first and second
neighbors �z1�� ,a� and z2�� ,a�� in networks with degree distribu-
tion given by Eq. �15�. From left to right, we plot z1�� ,a� �full
curves� and z2�� ,a� �dashed curves� for a=0 �black�, 1 �blue�, 2
�green�, and 3 �red�. The values of z1���3,a� for which z2�� ,a� is
not defined are plotted in gray, as well as regions of the curves for
which z1�� ,a�	z2�� ,a�. The circles denote the intersection of the
two curves, z1�� ,a� and z2�� ,a�, for each value of a.
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scription of social network formation. Nonetheless, even this
simple mechanism can highlight surprising features of the
models �as in our case a smaller network diameter for inter-
mediate values of �� and as such it is worthwhile to investi-
gate it in more general contexts than the original BA model.

We have also assumed that the connection costs in our
model are zero. This assumption is justified by the fact that if
costs are node independent they do not play any role in the
growing model. Similarly, costs do not play a significant role
if we restrict the comparison of average utility in Sec. III to
networks with the same size and the same average degree.
Nonetheless in a more realistic model, where links can be
rearranged over time, costs would also play an important role
in determining the shape of the network. Further analysis
taking into account both these effects is currently under de-
velopment.
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